The optical properties of a thin film of the [Ru(bpy)3][NaCr(ox)3] network structure obtained by pulsed laser deposition are described. The luminescence shows the characteristic doublet of R lines at 14 400 cm−1 of the spin-forbidden ligand field transition 2E(t2g3)→4A2(t2g3) of the [Cr(ox)3]3− chromophore. The resonant energy migration within the R1 line shows that the three-dimensional crystallographic structure is preserved during the coating process. The observation of the R lines of [Cr(bpy)3]3+ at 13 710 cm−1 indicates that a small fraction of Cr3+ ions migrate from the oxalate network to the tris-bipyridine cation site in the cavities of the network.
  • Photophysical properties of three-dimensional transition metal tris-oxalate network structures
    A. Hauser, M.E. Von Arx, V.S. Langford, S. Kairouani, U. Oetliker and A. Pillonnet
    in "Topics in Current Chemistry, Transition Metal and Rare Earth Compounds. Excited States, Transitions, and Interactions, Vol III" (ed. H. Yersin), Springer, Berlin, 241 (2004)
    DOI:10.1007/b96860 | unige:3941
Excitation energy transfer processes play an important role in many areas of physics, chemistry and biology. The three-dimensional oxalate networks of composition [MIII(bpy)3][MIMIII(ox)3]ClO4 (bpy=2,2-bipyridine, ox=oxalate, MI=alkali ion) allow for a variety of combinations of different transition metal ions. The combination with chromium(III) on both the tris-bipyridine as well as the tris-oxalate site constitutes a model system in which it is possible to differentiate unambiguously between energy transfer from [Cr(ox)3]3– to [Cr(bpy)3]3+ due to dipole-dipole interaction on the one hand and exchange interaction on the other hand. Furthermore it is possible to just as unambiguously differentiate between the common temperature dependent phonon-assisted energy migration within the 2E state of [Cr(ox)3]3–, and a unique resonant process.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Friday December 08 2017